Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy.

نویسنده

  • R F Egerton
چکیده

We discuss various factors that determine the performance of electron energy-loss spectroscopy (EELS) and energy-filtered (EFTEM) imaging in a transmission electron microscope. Some of these factors are instrumental and have undergone substantial improvement in recent years, including the development of electron monochromators and aberration correctors. Others, such as radiation damage, delocalization of inelastic scattering and beam broadening in the specimen, derive from basic physics and are likely to remain as limitations. To aid the experimentalist, analytical expressions are given for beam broadening, delocalization length, energy broadening due to core-hole and excited-electron lifetimes, and for the momentum resolution in angle-resolved EELS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Resolution Electron Energy Loss Spectroscopy (HREELS): a sensitive and versatile surface tool

We review the principles of high resolution electron energy loss spectroscopy (HREELS) and of its extensions to time, momentum and spin resolved domains. The principles of the construction design and of some results are reported and discussed. In particular, we review the different scattering mechanisms by showing paradigmatic examples of their application. Advantages and shortcomings of HREELS...

متن کامل

VEELS band gap measurements using monochromated electrons

With the development of monochromators for transmission electron microscopes, valence electron energy-loss spectroscopy (VEELS) has become a powerful technique to study the band structure of materials with high spatial resolution. However, artefacts such as Cerenkov radiation and surface effects pose a limit for interpretation of the low-loss spectra; also the inelastic delocalisation restricts...

متن کامل

Probing the photonic local density of states with electron energy loss spectroscopy.

Electron energy loss spectroscopy performed in transmission electron microscopes is shown to directly render the photonic local density of states with unprecedented spatial resolution, currently below the nanometer. Two special cases are discussed in detail: (i) 2D photonic structures with the electrons moving along the translational axis of symmetry and (ii) quasiplanar plasmonic structures un...

متن کامل

Electron energy-loss spectroscopy in the TEM

Electron energy-loss spectroscopy (EELS) is an analytical technique that measures the change in kinetic energy of electrons after they have interacted with a specimen. When carried out in a modern transmission electron microscope, EELS is capable of giving structural and chemical information about a solid, with a spatial resolution down to the atomic level in favourable cases. The energy resolu...

متن کامل

High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy.

An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ultramicroscopy

دوره 107 8  شماره 

صفحات  -

تاریخ انتشار 2007